Estimation in Dirichlet Random Effects Models by Minjung Kyung1,

نویسندگان

  • JEFF GILL
  • GEORGE CASELLA
چکیده

We develop a new Gibbs sampler for a linear mixed model with a Dirichlet process random effect term, which is easily extended to a generalized linear mixed model with a probit link function. Our Gibbs sampler exploits the properties of the multinomial and Dirichlet distributions, and is shown to be an improvement, in terms of operator norm and efficiency, over other commonly used MCMC algorithms. We also investigate methods for the estimation of the precision parameter of the Dirichlet process, finding that maximum likelihood may not be desirable, but a posterior mode is a reasonable approach. Examples are given to show how these models perform on real data. Our results complement both the theoretical basis of the Dirichlet process nonparametric prior and the computational work that has been done to date.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing the variance improvement in linear Dirichlet random effects models

An alternative to the classical mixedmodel with normal random effects is to use a Dirichlet process to model the random effects. Such models have proven useful in practice, and we have observed a noticeable variance reduction, in the estimation of the fixed effects, when the Dirichlet process is used instead of the normal. In this paper we formalize this notion, and give a theoretical justifica...

متن کامل

Estimation in Dirichlet Random Effects Models

We develop a new Gibbs sampler for a linear mixed model with a Dirichlet process random effect term, which is easily extended to a generalized linear mixed model with a probit link function. Our Gibbs sampler exploits the properties of the multinomial and Dirichlet distributions, and is shown to be an improvement, in terms of operator norm and efficiency, over other commonly used MCMC algorithm...

متن کامل

Sampling schemes for generalized linear Dirichlet process random effects models

We evaluate MCMC sampling schemes for a variety of link functions in generalized linear models with Dirichlet process random effects. First, we find that there is a large amount of variability in the performance of MCMC algorithms, with the slice sampler typically being less desirable than either a Kolmogorov-Smirnov mixture representation or a MetropolisHastings algorithm. Second, in fitting t...

متن کامل

New Findings from Terrorism Data: Dirichlet Process Random Effects Models for Latent Groups

Data obtained describing terrorist events are particularly difficult to analyze, due to the many problems associated with the both the data collection process, the inherent variability in the data itself, and the usually poor level of measurement coming from observing political actors that seek not to provide reliable data on their activities. Thus, there is a need for sophisticated modeling to...

متن کامل

Sampling Schemes for Generalized Linear Dirichlet Random Effects Models

We evaluate MCMC sampling schemes for a variety of link functions in generalized linear models with Dirichlet random effects. We find that there is a large amount of variability in the performance of MCMC algorithms, with the slice sampler typically being less optimal than either a Kolmogorov-Smirnov mixture representation or a Metropolis-Hastings algorithm. In fitting the the Dirichlet process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010